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Abstract: It is shown that the (empirically determined) mode of the kernel estimate uniformly converges to the conditional mode
function under the p-mixing condition over an increasing sequence of compact sets which increasesto <.
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1. Introduction

Let {(X;,Y;)}ien be astationary process where (X, Y;)
takevaluesin ¢ x and distributed as (X, Y'). Suppose that a
segment of data {(X;, Y;)}?” , has been observed. We are
interested in predicting Y from the data for a fixed value
of X.

Such an approach has been investigated by several authors
when the observed data are i.i.d. or when the process is
mixing (see the survey by Collomb [6] and Gyorfi et al.
[9D).

The objective of this paper is to investigate the esti-
mation of the conditional mode function, assuming that it
is uniquely defined. Also, to establish the uniform almost
sure convergence for the estimate of the conditional mode
function, obtained from the conditional density under the
p-mixing hypothesis.

Besides, most of the results suppose that the data be-
long to afixed compact set, thisis rather cumbersome for
the applications. In our paper we dea with variables be-
!iongi ng to a sequence of compact sets which increases to

Such a subject has been considered by several authors,
tonameafew, Collomb & al. [7] considered the case of the
conditional mode function establishing results of strong
consistency, Arfi [1] used the mode function to investigate
the prediction, Gasser et al. [8] studied the nonparametric
estimation of the mode of a distribution of random curves
and Hermann & Ziegler [10] proposed rates of consistency

for a nonparametric estimation of the mode in absence of
the smoothness assumptions.

The conditional mode is defined by means of the con-
ditional density f(y|z) of Y, given X, asfollows: ©(x) =
arg rr;gxf(y\x% and the so-called empirical mode predic-

tor is defined asthe maximum of f,,(y|x) overy € , where

fn(y|z) isthe kernel estimate of f(y|z) defined by:

_ Jfolz,y)
gn(T)

here g,,(z) > 0, isthe kernel estimate of the density func-
tion of X, g(z), and f,,(z,y) isthe kernel estimate of the
joint density of the pair (X,Y"), f(z,y).

These kernel estimates are defined, respectively, asfol-
lows:

1< y—Y; - X;
n\L, = T 1 K. K )
fa(@9) nh;ﬁ“; 2( i ) 1( in >

and

1 - ],‘—Xi
= — K N
gn(x) nhg 72:; 1 ( hn ) )

here K, (K,) are two Parzen-Rosenblatt kernels on ¢ ()
with K strictly positive and with bounded variation, and
K5 compactly supported; h,, isasequence of positive num-
bers such that: h,, — 0 and nh4*+! — co whenn — oo.

)

fnlyl)
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We show that the random function 6,,(xz) = arg max Jn(ylz) converges uniformly over a sequence of compact sets
Y

C,, (which increasesto ) to the mode function O(z).

2 Assumptions and main result

Let (£2, F, P) be aprobability space and let (X;, i €) be a sequence of random variables. We write 7, = o(X;,
ieS Q).

Giventhe o-algebras 5 and R in F.

Let p(B,R) =sup {corr(X,Y), X € Ly (B), Y € Ly (R)} where
corr(X,Y) = (EXY — EXEY)/VvarXvarY.

Bradley [3] introduced the following coefficients of dependence p(k) = sup {p(Fs, Fr)}, k > 0 where the supre-
mum is taken over al finite subsets S, T' C such that dist(S,T) > k.

Obvioudly,

0<p(k+1)<p(k) <1, k>0 and p(0) = 1.
Definition 2.1. A random variable sequence (X;, 7 > 1) is said to be a p-mixing sequence if there exists k € such that
(k) < 1.

Without loss of generality we may assume that (X;, ¢ > 1) issuch that p(1) < 1 (see Bryc and Smolenski [5]). In

the study of p-mixing sequences we refer to Bradley [3], [4] for the central limit theorem, Bryc and Smolenski [5] for
moment inequalities and almost sure convergence, Peligrad and Gut [11] for almost sure results.

We will make use of the following assumptions:
Al Theprocess (X;);e isstrictly stationary and p-mixing.

A2 Thejoint distribution P x v of the pair (X,Y") is absolutely continuous
with regard to the L ebesgue measure on ¢ x .

A3 Thereexistsa > 0, suchthat g(z) > n=% n > 1, foral = € C,,, where
Cp, =A{z :||z|| < ¢,} such that ¢,, — oo, n — 0.

A4 Thekernels K, j = 1,2 are Lipschitz of order -; > 0, in the sense that:
ALk <oo  |Kj(u) — K;(v)| < Lg|lu— o[ j=1,2.

A5 Kj, j = 1,2 are bounded and integrate to one with /; assumed to be
strictly positive.

A6 The mode function ©(.) satisfiesthe following condition on a sequence
of compact sets C,:
Ve, >0, 36, >0,(V¢ C, —19)

if sup [O(x) — C(x)] > e, then sup |F(O(@)|) — F(C(@)|0)] > fn.

zeCy, zeCyp
A7 Thereexists ¢ > 2 and M < oo suchthat E|Y|¢ < M.

Theorem 2.1. We suppose that the assumptions A1 - A7 hold. We further assume that the sequence h,, satisfies:

l+cd+a

E 2@+ D1+

hn=o0(n"") for 1/2> 71>

with &€ > 2 and p and a are two positive constants. Then we have :
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sup |0, (z) — O(z)] £% 0, n — co.
zeCy,

Remark 2.1. As sequence ¢,, defined in the hypotheses, we can choose ¢,, = n¢ where ¢ is a positive constant.

3 Preliminary results
sup sup | fu(ylz) — f(ylz)| <

zeCp YE
. — fula,y) = fa,y)l+
- sup sup r,y)— 5T,y
inf,ec, 9(7) zeC, YyE " ’
sup sup | (y|2)|gn () — g(z)|} <
z€Cy YE

1
Lo { s sl = £l + sup sup vl g () )1}
zeCyn Y€ zeCn Y&

with

K
n=%,,

K 1
sup | fu(ylz)] < 7= then ——2 sup |fu(ylz)| < =0,
ye n n ye

where ¢, issuch that §,, — oo whenn — oo and
K = max {sup,cs K1(z),sup,c« K2(y), 1} and we can write

sup sup | fn (ylz) — f(ylz)| <
zeC, YE

n® sup sup |fn(z,y) — f(2,y)| + 6, sup |gn(z) — g(v)]
zeC, Y& zeCy,

Lemma 3.1. Under the assumptions Al - A5, we have:

8p sup |gn(z) — g(z)] 50, n — occ.

rcCp

Proof. Consider the following decomposition:
gn<x) - g(l‘) - [gn(x) - Egn(x)] + [Egn(x) - g(ﬂf)}
then,

Sup 0p|gn () — g(z)| = 6n sup |gn(x) — Egn(2)| + 0y sup |Egn(z) — g(@)].
zeCy, zeCy, zERI

We start by showing that the stochastic part converges to zero amost surely when n approaches infinity and we write

gn(z) = Egn(x ZZ

-y i (55) - (52}

EZ; =0, |Z]| <2K{(nhd)~', E|Z;|<7mn™! and EZ? <v~2h;? wherer and v are two positive constants.

And, we write

> " P (bulgn(z) — Egn(z)| > ) = Z <5H|ZZZ-|>6>.
i=1

n=1 n=1

Now, we write

Wi = Z; =(1Z:|<ne] and V,,; = Z; =(1Zi|>ne] fora>1land 1 <i<n.
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Then,
i=1 i=1 =1
We need to show the following
>op <5n > (Wi — EWyi)| > no‘e/3> < 00 (3.2)
n=1 i=1
i (5n > Vil > nae/3> < o0 (3.3)
n=1 i=1
n=® ZEI/Vm — 0,n — oo. (3.4)
1=1

We start by showing (3.2).
The Markov inequality leads to:

Z £ < Z ni EW’”) >n 6/3> <a f: Z(SHE‘W,MW/nO‘ﬁ < co Z n5+‘rd of < o0

i=1 n=11i=1 n=1
if we choose §,, = n® for § > 0 and h,, = n~7 for 0 < 7 < 1/4 where ¢; and ¢, are two positive constants and 3 such
that 5 > (140 + 7d) /.
Now, we show (3.3).
Note that

( > nae/?)) U (1Zi] >n™) hence,
i=1 i=1

ni

i=1

S i

n=1

>n%/3> i P (2] >n®) <

Z nénE|Zi|5/naﬂ < cg Zn&d—ﬁ < 00
n=1 n=1
if we choose 3, §,, and h,, as above and where c3 is a positive constant.
Lastly we show that (3.4) holds.
We can write

il = 5nn_o‘ ZE|ZZ| :[|Zl\>n5]:

i=1

5nn_aE|Zi| =[1Z;|>n]) 0.

Next, we cover C,, by s, spheresin the shape of { : ||z — z,,|| < cpop, '} for 1 < j < pd, ¢, — oo and p,
chosen such that ;.,, — oo to be defined later and we make the following decomposition.

ng(:c) < n;g g[Kl (x *nXl _K (Injhan } .
”—;L% gE[Kl (x nXi)_K (%hnxzﬂ "
g3 o () o ()]
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Thefirst and the second term in the right-hand side of the inequality above are to be considered similarly and we have:

n
l‘—Xi xnj—Xi LK 1 LK — 1
>|m (57) - & (T)H%—' ~awl™ < EEet = fo

i=1

1
nhd

where 1, is chosen such that

ot
M = hd/’h-l-l Q.

Then:

ZZ

sup
zeCy

- xn'_Xi ZL’n'—Xi 2
[ () - (2] o

i=1

For al n > ny(e) andforall e, >0

e
= 1| Tnj — X Tn; — Xi
Z 2, | < P K, (2 ") _pK, |2t n |-
p(am S| ) < op (g 55 [ () - ()] )

vli=1
Now using similar decomposition asin (3.1) u¢ times; the use of (u44,,) instead of §,, permit to conclude that:

On sup |gn(z) — Egn(x)] 220, n— .

zeCy,

Now, we show that the deterministic part (6,, sup,¢ ra |Egn(z)—g(x)| ) convergesto zero when n approachesinfinity.
We write

Eon(o) = 9(0) = g [ 163 (") sty gt

weset z = h,, t(u — x); then the use of Bochner lemma and a Taylor expansion permit to conclude.

Lemma 3.2. Under the assumptions of the Theorem 2.1, we have:

n® sup Sup|fn(ac y) — flz,y)] £20, n— oco.
z€C, yER

Proof. We write

n

f’ﬂ(xvy) - f(Qj?y) = ZZZ(*T7:‘/) + Tn(x,y),

=1
where

noi=1 " "

a”d (o (552 - (252 (52}

1
Zz(xvy) - nh%ﬂ {K2
we have E(Z;) = 0, |Z] < 20 'h;9 'K, E|Z]| < 2n 'I'K and EZ2 < (2I'K)/(n%h%t1) where I is an
upperbound of f(., )and
K = max {supmed Kl(:c),supy€ Ko (y), 1}.

Now, let uswrite

ZP | fula,y) = Fla.y)| > €) =
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S PO |falesy) — fa) > ) =3P <n

n=1
And we write

Wi = Z; =(1Zi|<ne) and V,; = Z; =112 |>n] fora>land1<i<n

Then,
i=1 i=1 i=1
We need to show the following
ZP <n“ Z (Wi — EWpi)| > nae/?)) < o0
n=1 i=1
oo n
ZP (na ZVm > no‘e/3> < 0
n=1 i=1
n* Z EWni — Oa n — 0.

i=1

We start by showing (3.6).
The Markov inequality provides:

Z ( >n 6/3) <01§:ina BEW,il°

= n=1i=1

n

> (Wi — EWyy)

=1

oo
< ¢g Z pl=@+B g
n=1

where ¢; and ¢, are two positive constants and 3 such that 3 > 2.
Now, we show (3.7).
Note that

( > nae/3> U |Z;] > n®
i=1 i=1

hence,

el

ni

n

SV

=1

(o) o0
>n e/3> Z ep (1| > n®) an_“5E|Zi\ﬁ <

oo
c3 Z n‘aﬂ_l+“h;(d+l) <00

n=1

if we choose h,, = n~"/* and where c3 isapositive constant and 3 such that 3 > (a + d7 +7)/a witha > 0 and o > 1.

Lastly we show that (3.8) holds.

We can write:
n n
n*=NY  EWni| <0 Y EVii| = n*""E|Zi| =z, /500~ 0, n — 00
i=1 i=1
with a > a.
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Next, we cover C,, by ¢ spheresin the shape of {z : ||z — z,;]| < ¢, '} with1 < j < pd and p,, — oo tobe
defined later.

Consider the following decomposition

ZZi(m,y) = Z[Tz(x,y) = Xi(wnj,y)] —

ZE[Ti(l‘,y) $ng; + Z xn]a - ET; (Inj7 )]»
i=1

where T;(.,y) = hd+1K2( )K1(_f)
The first and the second term of the equality above are to be considered similarly.

By the fact that the kernel K is Lipschitz, we obtain:

sup sup | Z xrb]? y)] <
zeC, Y& i1
LK
WW — Ty <
LK . . 1
YRR Cnlhn = Logn

/71 g1/~ 1/~
L K "¢, 1
% ¢y, (logn) .
hgld+1+’v1)/71 X

where y,, ischosen sothat: 1, =
Thus,

supsup\ZZ z,y)| <
zeC, ye P

sup sup| Z i(Tnj,y) — EYi(znj,v)]| +

Y
1<j<ud v€ 5 Logn

and then, for all n > n;(¢) and al € > 0, we have:

P{sup sup\ZZ xy|>26}

zeC, yeR i—1

ZP{Sup|Z i(2nj,y) — EY(z0n;5, )| >e}. (3.9

yER 1=1
For fixed j, set:

n

Z[n('xn]a y) — ETi(xnja y)] = An(xnjvy) it |yl <wp
=1

n

S Xil@nsey) = EXil@nssy)] = @nl@ngy) i lyl > v,

=1
_1
where v,, isdefined by v,, = hy, " with p being a positive constant.
Then we have:

Suplz (@ng,y) — EYi(@nj, )l < sup |A(@ng, )l + sup [@n(@ng,y)l-
= ly|<vp ly|>vn
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Cover [—vy,, v,] by ,, spheres B, with centers ¢, and radii less than or equal to A7, where l,, < v, h,;" and n isa
fixed number. Then using same arguments to those used previously we obtain:

sup |Avn(xnj,y)| < thgl(”*”*(d“) a.s.,
Iy‘gvn

whereﬁvn(xnj,y) = Ap(2nj,y) — An(znj, ts) and Xg is apositive constant.

Furthermore,

l",
Wy = P{ max |An (2nj,ts)] > 6/2} < ZP{|An($nj,ts)| > )2} <
) s=1

=1,...dn

& B P{|An(znj,y)| > €/2}.
Y|ISUn

Then, making similar decomposition to (3.5) and following the same steps of the foregoing proof with the use of
(I,n~®) instead of n~* permit to conclude that

n
n sup sup |Z Zi(x,y)| £ 0.
z€C |y|<v, i1

It remains to show that: n°sup),(~., [¢n(2nj, y)| == 0. We have

sup |90n(xnjvy)|§ sup |Zn($n37y)|+ sup ‘ZETi(xnjay)L

ly[>vn y[>va i lyl>vn =

and by the compactness of the support of K5,

-y ~
K5 (yh ) <K :>[\Y|>vn/2} .

n
Therefore,

n

a - na I
n® sup | DT (oY) € — e KD vz (3.10)

[yl>vn =1 i=1
We need the use of the following in our proof
P(|Y] > v, /2) < (20,4 (EIY %) (3.11)

foracertain £ > 0 suchthat £ > uvyi(n—1).
For all € > 0, we have

n
P{ sup |ZT¢(xnj,y)\ > e} <e'E

‘y‘>vn i=1

sup | Y V(@ y)ﬂ :

|y‘>7jn i=1

Then, using (3.10) and (3.11) we obtain:

P {na sup \Zﬂ(zm,yﬂ > e} < eilf(?nah;dfl(20;1)§(E|Y|5) =

ly[>vn 27
~ 41+ &
e R, T (B[,
Inequality (3.9) implies:

i —d—14+£
P{”a sup sup |} Zi(w, )| >€} < Anpih, R (BIYIE),

z€Cn |y[>vn 5

where A is a positive constant.
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The choice of ¢ and the assumptions of the theorem permit us to conclude that:

n
n® sup sup |y Z;(x,y)| <% 0
zeC, YyE i1

To complete the proof of Lemma 3.2, we should show that:

n®supsup [T, (x,y)| — 0, n — oo.

zed ye
To thisend:
1 & y-Yi z— X,
Tn(z,y) = W;E{Kz ( I >K1 ( I )} = fz,y),
with

el (52w (55 - e (5

Properties of the Bochner’sintegral permit to write

To(z,y) = #//’x Ky (yh_nv> K (xh_nu> fxv(u,v)dudv — f(x,y).

Then, if weset 21 = (z — u)/hn, 22 = (y — v) /hy,, Weobtain

)Kl (:vh—u) fx.v(u,v)dudo.

To(a,y) = / / Ko(2) K1 (1) fxoy (2 — 21k y — zohn)dzrdzs — f(z,).

The conditions made on the kernels K& ; and a Taylor expansion with a proper choice of a permit to write

n®supsup | Ty, (z,y)| — 0, n — o0
zed ye

4 Proof of themain result
By the definitions of ©,,(z) and ©(z), we have
|f(On(2)]x) = f(O(2)|)| < |fo(@n(@)|z) — f(On(2)|2)] + | fn(On(z)|z) — f(O(2)|2)|

< sup | fulylz) — f(ylz)| + [sup fr(y[z) — sup f(y|z)]
ye ye yE
< 2sup|fu(ylz) — f(ylz)].
ye
Assumption A6 impliesthat for al ¢,, > 0 there exists 3,, > 0 such that:

P ( sup [0, (x) — O()] 2 ) <p ( sup sup | (y12) — £(yl2)] 2 @n) |

zeCyp zeCy, yE

which compl etes the proof of Theorem 2.1.
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